

Petro-physical Characterization of Sedimentary Environments Using Collaborative New Method in Wireline logs Interpretation

<u>Chun-Ming Chiu</u>¹, Li-Chung Feng¹, Yun-Hao Wu², Andy Min Hao Wang³, Chi-Chen Yang¹, Tim Tsung-Wen Hsiao¹

- Exploration & Production Business Division, CPC Corporation, Taiwan
- 2. Exploration & Production Research Institute, CPC Corporation, Taiwan
- 3. Schlumberger, Digital & Integration

Content

- Background and object
- Reservoir evaluation and Field develop plan
- Preliminary results of QI Machine Learning
- Concluding Remarks

Purpose of the project

Target

Challenges

- Reservoir Characterization
- Field development Plan
- Data management
- E&P collaboration

- Complex Geologic environment
- Significant vertical heterogeneity
- Data collection & QC
- Dispersed platform projects

(Li et al., 2019)

General Geology

General Geology

(IHS Energy Group, 2001)

stage)

Field Development Plan Optimization

Lithology Characterization and sedimentary facies

Core-Log lithofacies integration

Reservoir Sand

Tight Sand

Log: GR is around 90 gAPI, lower density, lower neutron, high Sonic velocity, higher resistivity; porosity>10%; shale content<40%.

Core: Fining up medium grained, minor coarse grained, occasionally very coarse grained, moderately sorted, clear cross bedding, good porosity, heavy oil odor.

Log: GR>100 gAPI, higher density, higher neutron, lower resistivity; porosity<10%; shale content<60%.

Core: Siltstone with very fine sand stripes in part, common argillaceous matrix, poor porosity, no

Clay Calcite Density Lith Porosity Volume Volume Classification (Vclc) (VcI) Reservoir Φ≥0.1 Sand Vcl ≤ 0.4 $\Phi < 0.1$ Φ ≥ 0.03 **Tight Sand** 0.4 < Vcl < $\rho > 2.5$ Vclc > 0.02 0.6 $\Phi < 0.03$ Shale Vcl ≥ 0.6

Calcareous Sand

Log: Lower GR, high density, density>2.5, high resistivity; porosity<10%; calcite content>10%, shale content<60%.

Core: Medium grained, trace very coarse grained, sub-angular to sub-rounded, moderately sorted, trace kaolinitic cement, calcareous cement.

Shale

shows.

Log: Higher GR, wide neutron-density cross, low Sonic velocity, lower resistivity; shale content>60%.

Structure Modeling

Fault Framework

Model Construction

Model Construction

Structure gridding

Well data upscaling

Property Modeling

Upscale

Property Modeling

Decision Tree

 Machine Learning Module in Petrel

- Case Study
 - Porosity curve prediction
 - Shear wave curve prediction
 - porosity cube prediction

Porosity Log prediction

- Conventional logging curves of 8 wells are used for training
 - Gamma Ray (GR), Deep Resistivity (RT), Medium Resistivity (RLA3), Invaded Formation Resistivity (RXOZ), Density (RHOZ), Neutron (TNPH), Sonic (DT), photoelectric effect (PEFZ)
- Target: Effective Porosity (PHIE)
- Results curves are mostly consistent with manual interpretation

Shear wave prediction

- Conventional logging curves are used for training
 - Gamma Ray (GR), Deep Resistivity (RT), Density (RHOZ), Neutron (TNPH), Sonic (DT)
- Target: Shear Slowness (DTSH)
- The predicted curve matches well with actual logged curve.
- discrimination of reservoir fluid

Porosity Cube prediction

Training model:

- Prediction:
- Input: P-impedance, Density and Vp/Vs cube.
- Output: Porosity Cube
- Result
 - Match well with actual logging curve

Data integration & collaboration

Challenges:

- Data storage in PC or external disk
- Time-consuming for data searching, preparation and transfer.
- Human errors in data import (CRS, datum, units)
- Duplicated Data
- Research result display (color bar, template, well-section, workflow)

High Performance Computing Storage

Workflow

- Data index, search, access
- Data share, collaboration
- Data filtering and management
- Resource evaluation workflow, reservoir simulation workflow
- Play Chance Mapping

Concluding Remark

- The sedimentary facies and reservoir characterization was analyzed by core-Log lithofacies integrating.
- The resource evaluation and field development plan were completed based on the geological model from deterministic inversion.
- Case study of QL Machine Learning suggested the predicted porosity and shear wave match well with manual interpretation and actual log data, respectively.
- The Petrel E&P platform and Studio improved efficiency in data management and collaboration among researchers.

Thank you for listening

